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Abstract In the digital age, concerns about privacy have notably elevated the
popularity of vault apps, especially on alternative platforms like Ap-
toide. Designed to conceal media, these apps often imitate familiar
tools, such as calculators, serving as decoys. While they serve to en-
hance user privacy, they present significant challenges for digital investi-
gators. Encrypted or deleted data, ranging from contraband to sensitive
documents, becomes difficult to access. Building upon previous research
from mainstream stores like the iOS App Store and Google Play Store,
our study focuses on Aptoide, a significant gray market app platform.
We employ a comprehensive framework named Grey-market vault app
Identification, Extraction, and Forensic analysis (GRIEF). This innova-
tive framework leverages feature extraction from app descriptions cou-
pled with advanced machine learning techniques. Our research provides
insights into the prevalence of vault apps in gray app markets and sets
the stage for in-depth studies on various Android platforms.

Keywords: Digital Forensics, Mobile Forensics, Android Apps, Grey Market App
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1. Introduction

In the age of digital pervasiveness, the quest for privacy has led to the
proliferation of applications designed to conceal user content. Termed
‘vault apps’, these applications serve as digital lockers, allowing users
to hide sensitive photos, texts, videos, and other data. While, on the
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surface, many of these apps masquerade as mundane utilities or games,
their underlying functionality is geared towards ensuring user privacy.
For instance, an app that appears to be a simple calculator might double
as a storage vault for private photos. In our previous work, we examined
the iOS App Store [1] and the Google Play Store [2] to understand the
landscape of content-hiding applications.

The rise of vault apps is particularly pronounced in third-party app
markets, with Aptoide being a notable example. Such platforms, often
termed ‘gray markets’, operate outside the purview of big tech’s main-
stream app stores, like Google Play and Apple’s App Store, thereby
escaping the rigorous scrutiny and security checks typically associated
with official marketplaces. This has made gray markets a fertile ground
for the proliferation of vault apps, some of which might be used for
nefarious purposes.

While vault apps address genuine privacy concerns, they also pose sig-
nificant challenges for digital forensics and security research. Encrypted
data, cloud-synced content, and remote wiping abilities make the re-
trieval of concealed or deleted data a daunting task. Furthermore, the
deceptive nature of these apps makes them hard to identify, let alone
analyze.

This paper delves deep into the world of vault apps in the gray mar-
ket, with a particular focus on apps found on Aptoide. Building upon
our prior research in mainstream app stores, we introduce GRIEF, a
novel system designed to identify, extract, and forensically analyze vault
apps. Through a combination of feature extraction techniques and ad-
vanced machine learning algorithms, GRIEF offers a promising approach
to tackle the challenges posed by vault apps in the gray market.

The ensuing sections provide a detailed exploration of our method-
ology, findings, and the implications of our research for the broader
Android ecosystem and the digital forensics community.

2. Related Work

In the realm of Android application analysis and security, the past
few years have witnessed a plethora of insightful research. These studies
have encompassed a broad spectrum of techniques, with static and dy-
namic analyses being the most predominant. At the forefront of static
analysis, Feng et al. introduced Apposcopy [4]. This framework em-
ploys a formal app description language to discern and counteract ma-
licious app behaviors. Notwithstanding its groundbreaking approach,
the framework might have benefited from a sharpened focus on the nu-
ances of vault apps. Complementing with Feng et al.’s efforts, Arzt et al.
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launched FlowDroid [3]. This open-source tool, renowned for its compre-
hensive static taint analysis, is adept at pinpointing privacy intrusions
within Android apps. However, its arsenal misses out on specific vault
app detection functionalities. Further enriching the discussion on be-
havior analysis, Hou et al. presented a method to reconstruct Android
app behavior graphs [5]. While their methodology holds promise for un-
masking clandestine app behaviors, its application to vault apps remains
uncharted. Zooming into the niche of encrypted or vault apps, Votipka
et al.’s [6] study stands out. Their expansive investigation into Android
ransomware has elucidated myriad behavioral patterns. While past re-
search has illuminated various aspects of Android application security
and analysis, our study takes a unique trajectory by diving deep into
the realm of vault apps on alternative platforms like Aptoide, bridging
the existing gaps and offering machine learning based methodologies for
detection and traditional forensic analysis.

3. Background and Preliminaries

This section offers a foundational understanding of Android applica-
tion permissions, which is pivotal to our research. The advent of mobile
technology has spurred a need for secure data storage solutions on mo-
bile devices, resulting in the proliferation of vault applications. These
apps are tailored to store and encrypt user data, fortifying it against
unauthorized breaches.

Vault apps manifest in diverse avatars — from photo lockers and cam-
ouflaged calculators to covert notepads. They frequently operate under
the radar, disguised as commonplace apps on a device [13]. Accessing
their concealed functionalities typically necessitates a password or some
other authentication method.

While these applications serve the legitimate purpose of securing per-
sonal data, they also pose a potential threat to security and privacy. This
is because they often require a wide range of permissions, giving them
access to sensitive data and resources on the device. Moreover, when a
device is involved in illegal activities, these vault apps can hinder law
enforcement by making the data forensics process more challenging [14].

When advertising apps across various app market stores, developers
typically use app titles, screenshots, and detailed text descriptions. We
leverage this information to pinpoint content-hiding applications and
discern the permissions these apps request on user devices. Android
application permissions play a critical role in app security by regulating
access to sensitive user data and system resources [9]. Each Android
app lists in its manifest file the permissions it requires, and for the
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app to function properly, users need to grant these permissions. While
some permissions correspond to security-sensitive tasks like accessing the
camera or reading contacts, others relate to system-level functions, such
as keeping the device awake [10]. In the context of vault applications,
the permissions they seek often hint at the nature of the data they aim
to protect.

Figure 1: Aptoide Scraping Architecture

4. Methodology

To empirically evaluate our proposed approach, we established an
experimental environment encompassing a wide range of Android appli-
cations. We detail our setup in the stages that follow:

4.1 Data Collection

App Collection and Labeling: Initially, we undertook the task of
gathering an extensive dataset of Android applications. We targeted
the Aptoide third-party app store and scraped it using keywords perti-
nent to vault applications. These keywords encompassed terms such
as ‘private,’ ‘sensitive,’ ‘censor,’ ‘protect,’ ‘decoy,’ ‘privacy,’ ‘secret,’
‘hide,’ ‘vault,’ ‘secure,’ ‘safe,’ ‘photos,’ ‘videos,’ ‘notes,’ ‘password,’ ‘con-
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tacts,’ ‘browser,’ ‘lock,’ ‘gallery,’ ‘calculator,’ ‘fingerprint,’ ‘password-
protected,’ ‘fake,’ and ‘steganography.’

Upon finding matching applications, we proceeded to download their
APKs, subsequently extracting basic details like the app’s name, devel-
oper, country of origin for the developer, version, download count, and
user rating.

After securing the APKs, we undertook a manual review of each ap-
plication’s webpage. This allowed us to sort the apps into two distinct
categories: vault and nonvault, a classification hinging on the function-
alities delineated on their respective webpages.

4.2 Identification System

The Vault-App Identification System utilizes a fusion of feature vector
generators and classifier models to discern vault applications. We train
a machine learning model using features derived from the applications,
and the trained models subsequently determine whether an application
qualifies as a vault or non-vault. The model’s accuracy is contingent
upon the quality of the feature vectors. For the generation of these fea-
ture vectors, we harness the titles, text descriptions, and the permissions
requested by the applications.

4.2.1 Feature Extraction From Text - Binary Vector.
The binary vector stands as a fundamental and widely-used text fea-
ture representation, indicating the words present within a given text.
However, considering every word from the applications’ titles and de-
scriptions would result in an exceedingly high-dimensional binary vec-
tor. Thus, drawing parallels to DECADE [2], we chose 21 frequently-
occurring words from titles and another 24 from the descriptions of the
applications. Leveraging these chosen words, we craft binary vectors for
titles and descriptions of the applications, designating the presence or
absence of these words. Finally, merging these vectors, we fashion 45-
length binary vectors for all applications, serving as their feature vector
for the ML model.

4.2.2 Feature Extraction From Text - Document Embed-
ding:. While binary vector representation is created with selected
representative words, it is challenging to determine which word is crucial
for vault app detection. Excluding certain words might lead to informa-
tion loss about applications. Contemporary ML models for text employ
text embedding to extract features automatically without requiring user
input. By leveraging all words and their interrelations, text embedding
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Table 1: Selected Words List from Title and Description of applications

Text type Selected Words

Description

private, sensitive, censor, protect, decoy, privacy, secret,
hide vault, secure, safe, photos, videos, notes,

password, contacts, browser, lock, gallery, calculator,
fingerprint, password-protected, password-protected, fake

Title
private, sensitive, censor, protect, decoy, privacy, secret,
hide, vault, secure, safe, photos, videos, notes, password,
contacts, browser, lock, gallery, calculator, fingerprint

models produce a compact representation of words and documents suit-
able for use as features in a machine learning model. To craft represen-
tations for titles and descriptions, we utilize Doc2Vec [17], an adaptation
of Word2Vec.

4.2.3 Feature Extraction From Permission Request. As
mentioned above, each application requests certain permissions during
installation, and users must grant these permissions for the app to func-
tion properly. Some permissions are linked with security-sensitive oper-
ations, such as accessing the camera or reading contacts, while others re-
late to system-level operations, like keeping the device awake. These per-
missions offer vital insights into the app’s functionality. Consequently,
we incorporate them as features of the application. After gathering
permissions from all applications, we identified 75 unique permissions.
Thus, we generate a 75-length binary vector indicating whether the ap-
plication seeks that specific permission or not.

4.3 Forensic Analysis

In this section, we conduct a detailed forensic analysis of five Android
vault apps to comprehend the pertinent artifacts. These applications are
Wire, Twinme, Private Notebook, 3C Sensitive Backup, and Steganog-
raphy Master. We employed Magnet AXIOM - Process and Examine,
a comprehensive digital forensics toolkit [15] designed for the collection,
analysis, and reporting of digital evidence [16]. We have structured this
section into five subsections where we present the analyses of these five
applications individually.
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Figure 2: Top 25 Frequent Permissions Requested by Applications

4.3.1 Wire App. Wire is a messaging and communication
platform. While it shares similarities with other messaging applications,
it provides several unique features for users. It offers end-to-end encryp-
tion for all forms of communication, including messaging, voice calls,
and file sharing. Our forensic analysis revealed that all the files asso-
ciated with the Wire application are stored in the data/data/com.wire
file structure. We successfully retrieved all the databases and media files
related to this application, as illustrated in Figure 3a and Figure 3b.

(a) Databases Files

(b) Media Files

Figure 3: Recovered from Wire App



8

We also obtained the metadata information for each of the media
files, as shown in Figure 4a. However, we were unable to recover any
message and call history from this application due to its use of end-
to-end encryption. Additionally, we identified the specific permissions
utilized by the Wire application in Figure 4b.

(a) Media Metadata from Wire

(b) Permissions Used by Wire

Figure 4: Media Metadata and Permissions of Wire

4.3.2 Twinme App. Twinme is another private and se-
cure messaging platform that offers users end-to-end encryption. This
cross-platform Android application doesn’t store messages centrally and
doesn’t require any personal information like emails or phone numbers
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to maintain user anonymity. Twinme supports various communication
methods, including text messaging, video calls, and voice calls. In our
forensics analysis, we observed that Twinme stores databases, files, con-
versations, and images locally in the data/data/org.twinlife.device.android.twinme
structures in an encrypted manner, as shown in Figure 5.

Figure 5: File Structure of Twinme

However, we managed to retrieve metadata information for all media
files associated with the application, as depicted in Figure 6a. Addi-
tionally, we gathered insights into the permissions used by this specific
application to understand its functionality and security features, pre-
sented in Figure 6b.

(a) Media Metadata

(b) Permissions Used

Figure 6: Media Metadata and Permissions of Twinme
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4.3.3 Private Notebook App. Private Notebook is an An-
droid application designed to assist users in creating and maintaining
notes, documents, and personal information. It prioritizes data security
through the implementation of several secure features such as encryp-
tion and password protection. During our analysis, we noted a specific
characteristic of the application: it stores files and databases in the
data/data/com.webadvices.privatenotebook structure in an encrypted
manner, as depicted in Figure 7a. Consequently, we could not retrieve
any note file or document from this application. However, we did man-
age to obtain information regarding the application’s permissions, as
shown in Figure 7b.

(a) File Structure

(b) Permissions Used

Figure 7: Media Metadata and Permissions of Private Notebook

4.3.4 3C Sensitive Backups App. The Android applica-
tion 3C Sensitive Backups allows users to securely back up and restore
essential data, including call logs, contacts, SMS, MMS, and calendar
data. Users can choose their preferred backup location, whether it be
local storage or remote cloud services such as Google Drive, Dropbox,
or FTP servers. During our forensics analysis, we faced a significant
challenge. Despite our efforts, we could only recover basic installation
details and no other information. This result highlights the application’s
robust data protection and security measures.
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4.3.5 Steganography Master App. The Android applica-
tion Steganography Master is designed to encode messages within im-
ages. Users can either save the resulting picture or share it with friends.
However, only the same application can decode the encoded message.
For enhanced security, users can set a password. Notably, this applica-
tion does not use external databases for storage; instead, it stores all
pictures locally. During our forensic analysis, we successfully identified
and retrieved all encoded pictures from the “Steganography Master”
folder located in the media folder. Additionally, we gathered valuable
metadata associated with these images as shown in figure 8.

Figure 8: Media Metadata from Steganography Master

5. Results and Evaluation

In this section, we present our experimental results. We first evalu-
ate the effectiveness of our text-based features and permission features
using various machine learning techniques. Then, we combine text and
permission features to create a feature set for each application. This set
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is then used to train machine learning models and produce results. We
employ accuracy, precision, recall, and F1 measures for comparison. In
our experiments, we partition the data into training and testing sets,
allocating 60% for training and 40% for testing.

5.1 Features Comparison

We use feature vectors extracted from text and permissions to train a
classification model. We create four different feature sets using these vec-
tors: (1)BV , the binary vector obtained from word presence, (2)Doc2V ec,
document embeddings, (3)Perm, permissions, and (4)PermBV , per-
missions combined with the binary vector. We train our classifier using
four different machine-learning algorithms, including Logistic Regres-
sion, Support Vector Machines, Gaussian Naive Bayes, and Random
Forests. Table 2 presents the summary of results and the accuracy of
the four classifiers for each feature set.

The results for each feature varied across different machine-learning
algorithms. Among them, the BV feature exhibited the best perfor-
mance, achieving approximately 86% accuracy when paired with the
Support Vector Machine. Notably, BV consistently maintained accu-
racy levels above 80% when used in conjunction with Logistic Regression
and Random Forest.

On the other hand, Doc2V ec reached its peak performance when
paired with Logistic Regression, boasting an impressive accuracy rate
of 90%. In contrast, the Perm feature experienced a significant drop
in accuracy, falling into the 70% range across all machine-learning mod-
els. This data underscores the limited effectiveness of the Perm feature
when used on its own. It becomes evident that a more effective approach
is to incorporate the Perm feature with the combined PermBV feature
to achieve better accuracy scores. When comparing BV to PermBV ,
the latter showed a notable 15% increase in accuracy, especially with the

Table 2: Accuracy Comparison of Machine Learning Models Based on
Various Feature Sets

Model BV Doc2vec Perm PermBV

NB 65.9 84.2 74.7 69.9
RF 83.5 75.6 71.4 85.7
SVM 86.8 85.5 74.7 79.7
LR 85.7 90.0 69.2 79.1
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Figure 9: Precision, recall, and F1 score comparison of ML models based
on different feature sets.

Random Forest model, and consistently delivered results in the 70% to
80% range across various machine learning models.

Based on this thorough analysis and the accompanying data table,
the most effective feature-model combinations are as follows: Logistic
Regression with Doc2V ec, Support Vector Machine with either BV or
Doc2V ec, and Random Forest with PermBV . These combinations con-
sistently yielded the highest overall accuracy levels.

In addition to accuracy, we provide an overview of precision, recall,
and F1 scores for each feature set across various machine-learning mod-
els. These results are visualized in Figure 9. Examining the figure, it
becomes evident that across most metrics, Doc2vec consistently deliv-
ers the most favorable outcomes, with BV ranking as the second-best
performer, and PermBV securing the third position. Conversely, Perm
consistently yields the lowest scores across all evaluation measures.

5.2 Parameter Analysis

Doc2V ec incorporates multiple parameters within its model, including
vector size, window size, epochs, and min count. Here, we scrutinize
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the impact of these parameters. Our analysis reveals that the majority
of these parameters do not exert a significant influence on the results.
However, two parameters, vector size, which specifies the dimensionality
of the embedded vectors, and window size, which specifies the size of the
sliding window, exhibit a subtle impact.

Figure 10: Comparison of ML models accuracy based on the vector size
within Doc2Vec.

For the vector size parameter, we experiment with varying size, rang-
ing from 50 to 300. As illustrated in Figure 10, we observe that increasing
the vector size enhances the accuracy of the Naive Bayes model, reaching
its peak when the size is 300. Conversely, larger vector sizes correspond
to decreased accuracy for the Support Vector Machine (SVM). Notably,
the vector size does not substantially affect the performance of Random
Forest and Logistic Regression models.

For the window size parameter, we experiment with varying size from
1, 2, 4, 8, and 12. As illustrated in Figure 11, we observe that increasing
the vector size enhances the accuracy of the Naive Bayes and Random
Forest models, reaching their peak when the size is 12. Furthermore,
the vector size does not substantially affect the performance of Logistic
Regression and SVM models.

6. Discussion and Implications

The implications of this research are multi-faceted. Firstly, from a
security analysis standpoint, our approach introduces a novel method
for security analysts to pinpoint potential vault applications. This can



Barrett, Salontai, Bardhan, Dorai, Akbas, & Woodell 15

Figure 11: Comparison of ML models accuracy based on the window
size within Doc2Vec.

significantly elevate the overall security analysis process. Secondly, in
the realm of forensic investigation, our findings provide insights into data
storage and data analysis of vault apps. Thirdly, by bringing attention
to vault applications, users can make more informed decisions about the
apps they install and use, contributing to improved data privacy. Lastly,
our research insights can serve as valuable input for policy-makers and
tech industry regulators. These insights can be instrumental in crafting
more effective policies around app permissions and data security. In
summary, our study not only breaks new ground in vault application
detection but also sets the stage for further exploration in this domain.
While we have made significant progress, there remains a vast expanse
to be explored as we refine and evolve our approach.

7. Limitations and Future Work

While our study boasts significant findings, it’s essential to acknowl-
edge certain limitations that underscore our research. Firstly, the initial
categorization of apps into vault and non-vault was executed manually,
a method which might have inadvertently introduced a bias. The adop-
tion of an automated or semi-automated categorization could address
this concern. Secondly, our dataset’s foundation is applications sourced
from the third-party app store, Aptoide. Integrating apps from varied
sources such as the Google Play Store or other third-party platforms
might offer a broader, more representative spectrum of results. Lastly,
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our methodology leans considerably towards static analysis, sidelining
dynamic behaviors. This emphasis might result in overlooked detec-
tions. Augmenting our approach with dynamic analysis might further
enrich our findings.

Our research, while showing promising results, acknowledges the lim-
itations inherent in our current approach, thus highlighting several av-
enues for future work. One direction worth exploring is automated cat-
egorization. By developing a machine learning model or an AI-based
system, we could refine the process of categorizing apps into vault and
non-vault categories, ensuring greater efficiency and accuracy. Further,
our current reliance on static analysis could be complemented with dy-
namic analysis, offering insights into more nuanced or concealed be-
haviors typical of potential vault apps. Moreover, we are considering
expanding our dataset to foster a more generalizable set of results. This
would involve integrating applications from varied sources and perhaps
even considering different operating systems.

In wrapping up, our research initiates a novel trajectory in Android
vault application detection. We are committed to continually refining
our methods, aspiring towards a holistic and encompassing approach to
vault app detection and analysis.

8. Conclusion

Despite the inherent limitations and challenges, our methodology in-
troduces a fresh perspective to Android application analysis, especially
in the realm of vault app detection. Our findings lay the groundwork for
subsequent research, aiming to enhance the proficiency of digital forensic
investigators and Android security analysts. By highlighting the intri-
cacies of vault apps, we aspire to foster a safer and more transparent
Android ecosystem. In an era where user privacy is paramount, it’s vi-
tal to comprehend the implications of installing and utilizing such vault
applications. Our research sheds light on a relatively underexplored area
in Android security analysis, paving the way for more advanced detec-
tion methods and deepening our understanding of vault apps.
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